इस लेख में, हमने MP board class 12th maths book solution chapter 1 relation and function exercise 1.2 pdf साझा की हैं, ये हल 12वीं गणित के छात्रों के लिए अति महत्वपूर्ण है। ये समाधान नवीनतम एमपी बोर्ड पुस्तकों के विषय विशेषज्ञों द्वारा हल किए गए हैं।
MP Board Class 12th Maths Solutions Chapter 1 संबंध एवं फलन Ex 1.2
सबसे पहले 12वीं गणित अध्याय 1 संबंध एवं फलन का अभ्यास 1.2 का हल प्रस्तुत कर रहे हैं। जो कि आगे आने वाली अभ्यासों का आधार बनायेगा। आइये शुरू करते हैं।प्रश्न 1.
सिद्ध कीजिए कि f(x) = 1x द्वारा परिभाषित फलन f : R* → R* एकैकी तथा आच्छादक है, जहाँ R* सभी ऋणेत्तर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत R* को N से बदल दिया जाए, जब कि सहप्रांत पूर्ववत R. ही रहे, तो भी क्या यह परिणाम सत्य होगा?
हल:
दिया है फलन f(x) =
यदि f(x1) = f(x2)
इसलिए f आच्छादक है।
अतः f : R* →R*, एकैकी व आच्छादक है।
यदि R* को N से बदल दिया जाए तथा सहप्रांत (co – domain) पूर्वत: R* है तब,
f : N →R*
माना f(n1) = f(n2)
⇒
∴ f एकैक है
परन्तु R* में प्रत्येक वास्तविक संख्या का पूर्वत प्रतिबिम्ब (Preimage) प्रांत N में नहीं होगा
जैसे-
∴ f आच्छादक (onto) नहीं है।
अतः परिणाम सत्य नहीं होगा।
प्रश्न 2.
निम्नलिखित फलनों की एकैक (Injective) तथा आच्छादी (Surjective) गुणों की जाँच कीजिए :
(i) f (x) = x² द्वारा प्रदत्त f: N →N फलन है।
(ii) f (x) = x² द्वारा प्रदत्त f: Z → Z फलन है।
(iii) f (x) = x² द्वारा प्रदत्त f: R → R फलन है।
(iv) f (x) = x³ द्वारा प्रदत्त f: N →N फलन है।
(v) f(x) = x³ द्वारा प्रदत्त f: Z → Z फलन है।
हल
(i) यहाँ f (x) = x² और f : N → N
(a) f(x1) = f(x²) ⇒ x²1 = x²2 ⇒ x1 = x2, x2 % N
∴ f एकैकी है।
(b) परन्तु सहप्रान्त में ऐसे अवयव हैं जो प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है। जैसे, माना 3 सहप्रान्त में है तो 3 प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है। अतः । एकैकी है परन्तु आच्छादक नहीं है।
(ii) f: Z → Z, जबकि f(x) = x²
(a) f(-1) = f(1) = 1 ⇒ -1 और 1 का प्रतिबिम्ब भिन्न नहीं है।
∴ f एकैकी नहीं है।
(b) सहप्रान्त में ऐसे अवयव हैं जो प्रान्त के किसी अवयव में प्रतिबिम्ब नहीं हैं। जैसे-3 सहप्रान्त के, 3 प्रान्त के किसी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अतः एकैकी नहीं है और न ही आच्छादक है।
(iii) f: R →R, यदि f(x) = x²
(a) (-1)²= 1 ⇒ f(-1) = f(1)
अतः -1 और -1 का प्रतिबिम्ब 1 है।
∴ एकैकी नहीं है।
(b) -2 सहप्रान्त में है परन्तु यह प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
अतः f आच्छादक नहीं है।
∴ f तो एकैकी है और न ही आच्छादक है।
(iv) f: N → N, यदि f(x) = x³
(a) f(x₁) = f(x₂) ⇒ x₁³ = x₂³⇒ x₁ = x₂
प्रत्येक x % N का एक प्रतिबिम्ब है।
∴ f एकैकी है।
(b) सहप्रान्त के बहुत से ऐसे अवयव हैं जिनमें प्रान्त के किसी भी अवयव के प्रतिबिम्ब नहीं हैं। जैसे-2, 3, 4, …… ये प्रान्त के किसी भी अवयव के प्रतिबिम्ब नहीं हैं।
∴ f आच्छादक नहीं है।
अतः f एकैकी है, परन्तु आच्छादक नहीं है।
(v) f: Z → Z, यदि f(x) = x³
(a) f(x₁) = f(x₂) ⇒ x₁³ = x₂³⇒ x₁ = x₂
∴ f एकैकी है।
(b) f के सहप्रान्त में बहुत से अवयव हैं जो प्रान्त में किसी भी अवयव का प्रतिबिम्ब नहीं हैं। जैसे–2, 3,
∴ f आच्छादक नहीं है।
अतः f एकैकी है परन्तु आच्छादक नहीं है।
प्रश्न 3.
सिद्ध कीजिए कि f(x) = [x] द्वारा प्रदत्त महत्तम पूर्णांक फलन f : R → R* , न तो एकैकी है और न आच्छादक है, जहाँ [x], x से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।
हल:
फलन f : R → R इस प्रकार परिभाषित है कि f(x) = [x]
यदि x = 1.1 तो f(1.1) = 1 (∵ 1, 1.1 कम पूर्णांक है)
तथा f(1.3) = 1
∵ 1.1 व 1.3 के प्रतिबिम्ब बराबर हैं।
∴ f एकैकी नहीं है।
x % R के लिए प्रान्त (domain) की प्रत्येक अवयव का सहडोमेन (Co-domain) में प्रतिबिम्ब होगा परन्तु सह प्रान्त के प्रत्येक अवयव का पूर्व प्रतिबिम्ब (Pre image), प्रान्त में नहीं होगा।
इसलिए । आच्छादक नहीं है।
अतः f न तो एकैकी है और न ही आच्छादक है।
प्रश्न 4.
सिद्ध कीजिए कि f(x) = |x| द्वारा प्रदत्त मापांक फलन f : R → R, न तो एकैकी है और न आच्छादक है, जहाँ |x| बराबर x, यदि धन या शून्य है तथा| |x| बराबर -x, यदि x ऋण है।
हल:
दिया है
f : R → R तथा f(x) = |x|
यदि x = 1 तथा f(1) = 1
यदि x = -1 तब f(-1) = 1
∵ 1 और -1 दोनों का प्रतिबिम्ब 1 है।
∴ f एकैकी नहीं है।
∵ सहडोमेन (Co-domain) के ऋणात्मक अवयव का कोई भी पूर्व प्रतिबिम्ब (Pre image) डोमेन (domain) में नहीं है।
∴ f आच्छादक नहीं है।
अतः f न तो एकैकी और न ही आच्छादक है।
प्रश्न 5.
सिद्ध कीजिए कि
द्वारा प्रदत्त चिन्ह फलन न तो एकैकी है और न आच्छादक है।
हल:
f : R → R इस प्रकार परिभाषित है कि
∴ f(1) = 1 तथा f(2) = 1
∵ 1 व 2 का प्रतिबिम्ब समान (1) है।
पुनः x > 0 के लिए
f(x₁) = f(x₂) = 1 जहाँ x₁ ≠ x₂
इसी प्रकार x < 0 के लिए
f(x₁) = f(x₂) = -1 जहाँ x₁ ≠ x₂
∴ f एकैकी नहीं है।
सहप्रान्त (Co-domain) के अवयव -1, 0, 1 का पूर्व प्रतिबिम्ब (Pre image) डोमेन (domain) में नहीं है।
∴ f आच्छादक नहीं है।
अतः f न तो एकैकी है और न ही आच्छादक है।
प्रश्न 6.
मान लीजिए कि A = {1, 2, 3}, B = {4, 5, 6, 7} तथा f = {(1, 4),(2, 5),(3, 6)}A से B तक एक फलन है। सिद्ध कीजिए कि f एकैकी है।
हल:
A = {1, 2, 3}, B = {4, 5, 6, 7}
तथा f = {(1, 4),(2, 5), (3, 6)}
चित्र के अनुसार A के प्रत्येक अवयव का प्रतिबिम्ब B में है।
इसलिए f एकैकी है।
प्रश्न 7.
निम्नलिखित में से प्रत्येक स्थिति में बतलाइए कि क्या दिए हुए फलन एकैकी, आच्छादक अथवा एकैकी आच्छादी (bijective) हैं। अपने उत्तर का औचित्य भी बतलाइए।
(i) f(x) = 3 – 4x द्वारा परिभाषित फलन f : R → R है।
(ii) f(x) = 1+ x² द्वारा परिभाषित फलन f: R →R है।
हल:
(i) यहाँ f: R → R, यदि f(x) = 3 – 4x
(a) f(x₁) = f(x₂) ⇒ 3 – 4x₁ = 3 – 4x₂ = x₁ ⇒ x₂
अत: f एकैकी है।
(b) f(x) = y = 3 – 4x
∴ x =
y के प्रत्येक मान के लिए एक ही मान है।
सहप्रान्त में प्रत्येक प्रान्त के एक अवयव का प्रतिबिम्ब है।
∴ f आच्छादक है।
अतः f एकैकी तथा आच्छादक है।
(ii) f : R → R, यदि f(x) = 1 + x²
(a) f(-1) = 1 + 1 = 2 f(1) = 1 + 1 = 2
f(-1) = f(1)
-1 और 1 दोनों का एक प्रतिबिम्ब है।
∴ f एकैकी नहीं है।
(b) सहप्रान्त की कोई भी ऋणात्मक संख्या प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अतः एकैकी तथा आच्छादक नहीं है।
प्रश्न 8.
मान लीजिए कि A तथा B दो समुच्चय हैं। सिद्ध कीजिए कि f: A × B → B × A, इस प्रकार हैं कि f (a, b) = (b, a) एक एकैकी आच्छादी (bijective) फलन है।
हल:
यहाँ f = (A × B)→ (B × A), यदि f(a, b) = (b, a)
(a) f(a₁, b₁) = f(a₂, b₂) ⇒ (b₁, a₁) = (b₂, a₂)
∴ b₁ = b₂, और a₁ = a₂
अत: f एकैकी है।
(b) सहप्रान्त का सदस्य (p, q) प्रान्त में (g, p) का प्रतिबिम्ब है।
∴ f आच्छादक है।
अतः f एकैकी तथा आच्छादक है।
प्रश्न 9.
मान लीजिए कि समस्त n % N के लिए,
द्वारा परिभाषित एक फलन f: N → N है। बतलाइए कि क्या फलन f एकैकी आच्छादी है। अपने उत्तर का औचित्य भी बतलाइए।
हल:
फलन f: N → N इस प्रकार परिभाषित है कि
∵ प्रान्त में स्थित अवयव 1 व 2 के प्रतिबिम्ब सहप्रान्त में एक ‘1’ ही है।
∴ f एकैक नहीं है।
इसलिए f आच्छादी नहीं है।
पुनः सह प्रान्त के प्रत्येक अवयव की Pre image प्रान्त में स्थित है।
इसलिए f आच्छादक है।
अतः f एकैक नहीं है परन्तु आच्छादक है। इसलिए f एकैकी आच्छादती (bijective) नहीं है।
प्रश्न 10.
मान लीजिए कि A = R – {3} तथा B = R – {1} है f(x) =(x−2x−3) द्वारा परिभाषित फलन f: A → B पर विचार कीजिए। क्या एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।
हल :
f: A → B, जहाँ A = R – {3}, B = R – {1},
f इस प्रकार परिभाषित है कि
⇒ y के प्रत्येक मान के लिए प्रांत (domain) में Pre image x =
इसलिए f आच्छादक है।
अतः f एकैक तथा आच्छादक है।
प्रश्न 11.
मान लीजिए f: R → R; f (x) = x⁴ द्वारा परिभाषित है। सही उत्तर का चयन कीजिए।
(A) f एकैकी आच्छादक है। (B) f बहुएक आच्छादक है
(C) f एकैकी है किन्तु आच्छादक नहीं है, (D) f न तो एकैकी है और न आच्छादक है।
हल:
यहाँ f: R → R, यदि f (x) = x⁴
(a) f(-1) = (-1)4 = 1, f(1) = (-1)⁴ = 1
f(-1) = f(1)
-1 और 1 का प्रतिबिम्ब 1 है।
∴ f एकैकी नहीं है।
(b) सहप्रान्त का -1 प्रान्त के किसी भी सदस्य का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अत: f एकैकी और आच्छादक नहीं है।
अतः विकल्प (D) सही है।
प्रश्न 12.
मान लीजिए कि f (x) = 3x द्वारा परिभाषित फलन f: R → R है। सही उत्तर चुनिए :
(A) f एकैकी आच्छादक है
(B) f बहुएक आच्छादक है
(C) f एकैकी है परन्तु आच्छादक नहीं है
(D) f न तो एकैकी है और न आच्छादक है
हल:
यहाँ f :R → R, f(x) = 3x द्वारा परिभाषित किया गया है।
(a) f(x₁) = f(x₂) = 3x₁ = 3x₂
∴ x₁ = x₂
अतः f एकैकी है।
(b) माना y = 3x
∴ x =
y के प्रत्येक मान के लिए x का मान निम्न है।
∴ आच्छादक है।
अतः f एकैकी तथा आच्छादक है।
अतः विकल्प (A) सही है।
तो दोस्तों, कैसी लगी आपको हमारी यह पोस्ट ! इसे अपने दोस्तों के साथ शेयर करना न भूलें, Sharing Button पोस्ट के निचे है। इसके अलावे अगर बिच में कोई समस्या आती है तो Comment Box में पूछने में जरा सा भी संकोच न करें। अगर आप चाहें तो अपना सवाल हमारे ईमेल Personal Contact Form को भर पर भी भेज सकते हैं। हमें आपकी सहायता करके ख़ुशी होगी । इससे सम्बंधित और ढेर सारे पोस्ट हम आगे लिखते रहेगें । इसलिए हमारे ब्लॉग “Variousinfo” को अपने मोबाइल या कंप्यूटर में Bookmark (Ctrl + D) करना न भूलें तथा सभी पोस्ट अपने Email में पाने के लिए हमें अभी Subscribe करें। अगर ये पोस्ट आपको अच्छी लगी तो इसे अपने दोस्तों के साथ शेयर करना न भूलें। आप इसे whatsapp, Facebook या Twitter जैसे सोशल नेट्वर्किंग साइट्स पर शेयर करके इसे और लोगों तक पहुचाने में हमारी मदद करें। धन्यवाद !
If you liked the information of this article, then please share your experience by commenting. This is very helpful for us and other readers. Thank you