Class 12th maths notes chapter 1 Relationship and function ex1.4

Mp board class 12th maths book solution chapter 1 relation and function (संबंध एवं फलन) exercises 1.3

इस लेख में, हमने MP board class 12th maths book solution Chapter 1 relation and function pdf साझा की हैं, ये हल 12वीं गणित के छात्रों के लिए अति महत्वपूर्ण है। ये समाधान नवीनतम एमपी बोर्ड पुस्तकों के विषय विशेषज्ञों द्वारा हल किए गए हैं।

Table of Contents

MP Board Class 12th Maths Solutions Chapter 1 संबंध एवं फलन Ex 1.4

यहाँ हम 12वीं गणित अध्याय 1 संबंध एवं फलन का अभ्यास 1.4 का हल प्रस्तुत कर रहे हैं। जो कि आगे आने वाली अभ्यासों का आधार बनायेगा। आइये शुरू करते हैं।
प्रश्न 1.

निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित प्रत्येक संक्रिया से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

(i) Z+ में, a * b = a – b द्वारा परिभाषित संक्रिया
(ii) Z+ में, a* b = ab द्वारा परिभाषित संक्रिया
(iii) R में, संक्रिया *, a* b = ab2 द्वारा परिभाषित
(iv) Z+ में, संक्रिया *, a* b = |a – b| द्वारा परिभाषित
(v) Z+ में, संक्रिया *, a* b = a द्वारा परिभाषित

      उत्तर:

(i) Z+ में, a* b = a – b द्वारा परिभाषित संक्रिया है
यदि a > b, a * b = a – b ϵ Z+
परन्तु यदि a < b, a * b = a – b < 0, Z+ में नहीं है।
अत:* संक्रिया द्विआधारी संक्रिया नहीं है।

(ii) Z+ पर * संक्रिया, a * b = ab द्वारा परिभाषित है।
यदि a, b ϵ Z+ ⇒ a और b दोनों धनात्मक हैं।
a * b = ab भी धनात्मक है।
ab ϵ Z+
अतः यह संक्रिया द्विआधारी है।

See also  Class 12th maths notes chapter 1 Relationship and function ex1.3

(iii) R पर * संक्रिया a* b = ab+ द्वारा परिभाषित है।
यदि a, b ϵ R, ab2 भी R* में है।
अतः यह संक्रिया द्विआधारी है।

(iv) Z+ पर * संक्रिया a * b = |a – b| द्वारा परिभाषित है।
यदि a, b ϵ Z+ , |a – b | ϵ Z+
अंत: यह संक्रिया द्विआधारी है।

(v) Z+ पर * संक्रिया a* b = a द्वारा परिभाषित है।
यदि a, b ϵ Z+, ∴ a * b = a ϵ Z+
अत: यह संक्रिया द्विआधारी है।

प्रश्न 2.

निम्नलिखित परिभाषित प्रत्येक द्विआधारी संक्रिया के लिए निर्धारित कीजिए कि क्या द्वि आधारी क्रमविनिमेय है तथा क्या साहचर्य है।

(i) Z में, a * b = a – b द्वारा परिभाषित
(ii) Q में, a * b = ab + 1 द्वारा परिभाषित
(iii) Q में, a * b = ab2 द्वारा परिभाषित
(iv) Z+ में, a * b = 2ab द्वारा परिभाषित
(v) Z+ में, a* b = ab द्वारा परिभाषित
(vi) R – { – 1} में, a* b = ab+1 द्वारा परिभाषित

      उत्तर:

(i) Z पर संक्रिया a* b = a – b द्वारा परिभाषित है।
(a) यदि a * b = a – b और b * a = b – a
परन्तु a – b ≠ b – a ⇒ a* b + b * a
∴ यह संक्रिया क्रमविनिमेय नहीं है।

(b) यदि a * (b * c) = a * (b – c) = a * (b – c)
a – (b – c) = a – b + c
(a * b) * c = (a – b) * c = a – b – c
स्पष्ट है कि a * (b * c) (a * b) * c
∴ संक्रिया साहचर्य नहीं है। अतः संक्रिया न तो क्रमविनिमेय है और न ही साहचर्य है।

(ii) Q पर * संक्रिया, a * b = ab + 1 से परिभाषित है।
(a) a * b = ab + 1, b * a = ba + 1 = ab + 1
∴ a * b = b * a
∴ यह संक्रिया क्रमविनिमेय द्विआधारी है।

(b) यदि a * (b * c) = a * (bc + 1) = a (bc + 1) + 1
= abc + a + 1
(a * b) * c= (ab + 1) * c =(ab + 1)c + 1
= abc + c + 1
∴ (a * b) * c ≠ a + (b + c)
∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है। अतः यह संक्रिया क्रमविनिमेय है परन्तु साहचर्य नहीं है।

(iii) Q पर * संक्रिया, a * b = ab2 द्वारा परिभाषित है।

∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया है।
अतः यह संक्रिया क्रमविनिमेय और साहचर्य दोनों हैं।

(iv) Z+ पर * संक्रिया a* b = 2ab से परिभाषित है।
(a) ∴ a * b = 2ab, b * a = 2ba = 2ab
⇒ a * b = b * a
अतः संक्रिया क्रमविनिमेय संक्रिया है।

(b) a * (b * c) = a * 2bc = aa.2bc
(a * b) * c = 2ab * c = 22ab.c
∴ a * (b * c) ≠ * (a * b) *c
∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है। अतः यह संक्रिया क्रमविनिमेय है परन्तु साहचर्य नहीं है।

(v) Z+ पर * संक्रिया, a * b = ab से परिभाषित है।
(a) a * b = ab, b * a = ba
∴ a * b + b* a
अत: यह संक्रिया क्रमविनिमेय नहीं है।
(b) a * (b * c)=a * bc = a(bc)
(a * b) * c = ad * c = a(b)c = abc
∴ (a * b) * c * a * (b * c)
∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है।
अत: यह संक्रिया न तो क्रमविनिमेय है और न ही साहचर्य

(vi) R – {-1} पर * संक्रिया, a * b = ab+1 द्वारा परिभाषित है।

∴ यह संक्रिया साहचर्य द्विआधारी संक्रिया नहीं है।
अत: यह संक्रिया क्रमविनिमेय है और न ही साहचर्य है।

प्रश्न 3.

समुच्चय {1, 2, 3, 4,5} में a ^ b= निम्नतम {a, b} द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए। संक्रिया के लिए संक्रिया सारणी लिखिए।

      उत्तर:


समुच्चय {1, 2, 3, 4, 5} पर संक्रिया ^ सारणी निम्न है-

MP Board Class 12th Maths Solutions Chapter 1 Relationship and function ( संबंध एवं फलन )

प्रश्न 4.

समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी (सारणी 1.2) द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए तथा

(i) (2 * 3) * 4 तथा 2 * (3 * 4) का परिकलन कीजिए।
(ii) क्या * क्रम विनिमेय है?
(iii) (2 * 3) * (4 * 5) का परिकलन कीजिए। (संकेत : निम्न सारणी का प्रयोग कीजिए।)

      उत्तर:

समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी (सारणी 1.2) द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए तथा

(i) दी गई सारणी से
(2 * 3) * 4 = 1 * 4 = 1
तथा 2 * (3 * 4) = 2 * 1 = 1

(ii) माना a, b ϵ {1, 2, 3, 4, 5}
∴ सारणी से, a * a = a (a ≠ b) तथा a, b विषम संख्या है
a * b = b * a = 1
2 * 4 = 4 * 2 = 2 जहाँ a तथा b सम संख्या तथा a ≠ b
अतः a * b = b * a
अतः द्विआधारी संक्रिया क्रम विनिमेय है।

See also  Class 12th maths notes chapter 3 Matrix Ex 3.4

(iii) सारणी से,
(2 * 3) * (4 * 5) = 1 *1
= 1

प्रश्न 5.

मान लीजिए कि समुच्चय {1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया *’, a *’ b = a तथा b का HCF द्वारा परिभाषित है। क्या संक्रिया *’ उपर्युक्त प्रश्न 4 में परिभाषित संक्रिया * के समान है? अपने उत्तर का औचित्य भी बतलाइए।

      उत्तर:


यहाँ समुच्चय {1, 2, 3, 4, 5} संक्रिया a*’ b H.C.F. a, b द्वारा परिभाषित है।
इस संक्रिया की निम्न सारणी दी गयी है-

प्रश्न 4 में दी गई सारणी और यह सारणी समान है।
अतः संक्रिया *’ तथा * समान है।

प्रश्न 6.

मान लीजिए कि N में एक द्विआधारी संक्रिया, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
(i) 5 * 7, 20 * 16
(ii) क्या संक्रिय * क्रम विनिमेय है?
(iii) क्या * साहचार्य है?
(iv) N में * का तत्समक अवयव ज्ञात कीजिए।
(v) N के कौन-से अवयव * संक्रिया के लिए व्युत्क्रमणीय है?

      उत्तर:


द्विआधारी संक्रिया (Binary Operations) * इस प्रकार परिभाषित है कि
a * b = a तथा b का L.C.M.
(i) 5 * 7 =5 तथा 7 का L.C.M.
= 35
तथा 20 * 16 = 20 तथा 16 का L.C.M.
= 80

(ii) a * b = a तथा b का L.C.M.
= b तथा a का L.C.M
a * b = b * a
अतः द्विआधारी संक्रिया क्रम विनिमेय है।

(iii) a * (b * c) = a * (b तथा c का L.C.M.)
= a तथा (b तथा c का L.C.M.) का L.C.M.
= a, b तथा c का L.C.M.
इसी प्रकार
(a * b) * c =(a तथा b का L.C.M.) * c
=a, b, c of L.C.M.
⇒ a *(b * c) =(a * b) * c
अतः द्विआधारी संक्रिया * साहचर्य है।

(iv) N में * संक्रिया की तत्समक अवयव 1 है।
∵ 1 * a = a * 1 = a
= 1 तथा a का L.C.M.

(v) माना * : N × N → N इस प्रकार परिभाषित है कि a * b = a तथा b का L.C.M.
∴ a = 1, b = 1 के लिए,
a * b = 1 = b * a
अत: 1a* संक्रिया के लिए व्युत्क्रमणीय है।

प्रश्न 7.

क्या समुच्चय {1, 2, 3, 4, 5} में a * b = a तथा b का LCM द्वारा परिभाषित * एक द्विआधारी संक्रिया है? अपने उत्तर का औचित्य भी बतलाइए।

      उत्तर:


दिया गया समुच्चय = {1, 2, 3, 4, 5} द्विआधारी संक्रिया द्वारा परिभाषित है कि a * b = a और b का LCM 2 * 6 = 6 जो कि समुच्चय {1, 2, 3, 4, 5} में नहीं है इसलिए * एक द्विआधारी संक्रिया है।

प्रश्न 8.

मान लीजिए कि N में a * b = a तथा b का HCF द्वारा परिभाषित एक द्विआधारी संक्रिया है। क्या * क्रमविनिमेय है? क्या * साहचर्य है? क्या N में इस द्विआधारी संक्रिया के तत्समक का अस्तित्व है?

      उत्तर:


यहाँ N, प्राकृत संख्याओं का समुच्चय है।
द्विआधारी संक्रिया a * b = a, b का H.C.F. द्वारा परिभाषित
(i) a, b का H.C.F. = b, a के H.C.F.
a * b = b * a
अतः संक्रिया क्रमविनिमेय है।

(ii) a * (b * c)= a * (b, c का H.C.F.)
=a व b, c का H.C.F.
= a, b, c का H.C.F.
(a * b) * c = (a, b का H.C.F.) * c
= a, b व c का H.C.F.
= a, b, c का H.C.F.
a * (b * c)= (a * b) * c (∵ संक्रिया साहचर्य है)

(iii) 1 * a = a * 1 = 1 ≠ a
अतः तत्समक अवयव का अस्तित्व नहीं है।

प्रश्न 9.

मान लीजिए कि परिमेय संख्याओं के समुच्चय में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

(i) a * b = a – b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a – b)2
(v) a * b = ab4
(vi) a * b = ab2
ज्ञात कीजिए कि इनमें से कौन-सी संक्रियाएँ क्रमविनिमेय हैं और कौन-सी साहचर्य हैं।

      उत्तर:

यहाँ परिमेय संख्याओं का समुच्चय Q दिया है।
(i) a * b = ab – b, द्विआधारी संक्रिया है।
(a) b * a = b – a
∴ a – b ≠ b – a ⇒ a * b ≠ b * a
अत: यह संक्रिया क्रमविनिमेय नहीं है।
(b) a * (b * c) = a * (b – c) = a – (b – c) = a – b + c
(a * b) * c = (a-b)* c = a – b -c
∴ a – b + c ≠ a – b – c = a * (b * c) * (a * b) * c
अतः यह संक्रिया साहचर्य नहीं है।

(ii) (a) a * b = a2 + b2
∴ b * a = b2 + a2 = a2 + b2
⇒ a * b = b * a
अत: यह संक्रिया क्रमविनिमेय है।
(b) a * (b * c) = a * (b2 + c2) = a2 + (b2 + c2)2
(a + b) * c = (a2 + b2) * c = (a2 + b2)2 + c2
⇒ a * (b * c) ≠ (a * b) * c.
अतः यह * संक्रिया साहचर्य नहीं है।

See also  Class 12th maths notes chapter 2 Inverse trigonometric function Ex 2.1

(iii) संक्रिया a * b = a + ab द्वारा परिभाषित है।
(a) a * b = a (1 + b), b * a = b + ba = b (1 + a)
∴ a * b + b * a
अतः यह * संक्रिया क्रमविनिमेय नहीं है।
(a) a * (b * c) = a + (b + bc)= a + a (b + bc)
= a + ab + abc
(a * b) * c = (a + ab) * c = (a + ab) + (a + ab)c
= a + ab + ac + abc
∴ a * (b * c) (ab) * c
अतः यह * संक्रिया साहचर्य नहीं है।

(iv) दिया है : a * b = (a – b)2
(a) a * b = (a – b)2, b * a = (b – a)2 = (a – b)2
∴ a * b = b * a
अतः यह * संक्रिया क्रमविनिमेय है।
(b) a * (b * c) = a * (b – c) = [a – (b – c)2]2
(a * b) * c = (a – b)2 * c = [(a – b)2 – c]2
∴ a * (b * c) ≠ (a * b) * c
अतः यह * संक्रिया साहचर्य नहीं है।

(v) a * b = ab4 ab4

अतः यह * संक्रिया साहचर्य है।

(vi) a * b = ab2
(a) a * b = ab2, b * a = ba
∴ a * b ≠ b * a
अत: यह * संक्रिया क्रमविनिमेय नहीं है।
(b) a * (b * c) = a + bc2 = a (bc2)2 = ab2c4
(a * b) * c = ab2 * c = ab2c2 = ab2c2
∴ a + (b * c) ≠ (a * b) * c.
अतः यह * संक्रिया साहचर्य नहीं है

प्रश्न 10.

सिद्ध कीजिए कि प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।

      उत्तर:


यहाँ (i) a * b = a – b
यदि e तत्समक अवयव हो तो
a * e = a – e, e * a = e – a
∴ a – e ≠ e – a ⇒ a * e ≠ e * a
अतः e का अस्तित्व नहीं है।

(ii) a * b = a2 + b2
∴ a * e = a2 + e2, e * a = e2 + a2
a * e = e * a ≠ a
अतः e का अस्तित्व नहीं है।

(iii) a * b = a + ab
a * e = a + ae, e * a = e + ea
∴ a * e # e * a # a
अत: e का अस्तित्व नहीं है।

(iv) a * b = (a – b)
a * e = (a – e)2 # a, e * a = (e – a)2 # a
a * e = e * a # a
अतः e का अस्तित्व नहीं है।

(v) a * b = ab4
a * e = ae4 # a, e * a = ea4 # a
∴ a * e = e * a # a
अतः e का अस्तित्व नहीं है।

(vi) a * b = ab2
a * e = ae2 # a, e * a = ea2 # a
∴ a * e # e * a # a
अतः e का अस्तित्व नहीं है।

प्रश्न 11.

मान लीजिए कि A = N × N है तथा A में (a, b) * (c, d) = (a + c, b + d)द्वारा परिभाषित एक द्विआधारी संक्रिया है। सिद्ध कीजिए कि * क्रम विनिमेय तथा साहचर्य है। A में * का तत्समक अवयव, यदि कोई है, तो ज्ञात कीजिए।

      उत्तर:


माना A = N × N
द्विआधारी संक्रिया (Binary operation) * इस प्रकार परिभाषित है कि
(a, b) * (c, d) = (a + c, b + d)
इसलिए (c, d) * (a, b) = (c + a, d + b)
=(a + c, b + d)
=(a, b) * (c, d)
अतः द्विआधारी संक्रिया * क्रम विनिमेय है
पुनः (a, b)* [(c, d) * (e, f)]
= (a, b) * (c + e, d + f)
= (a + c + e, b + d + f)
तथा [(a, b) * (c, d)] * (e, f)
= (a + c, b + d) * (e, f)
= (a + c + e, b + d + f)
= (a, b) * [(c, d) * (e, f)]
= [(a, b) * (c, d)]* (e, f)
अतः दी गई संक्रिया * साहचर्य है।
A में तत्समक अवयव का अस्तित्व नहीं है।

प्रश्न 12.

बतलाइए कि क्या निम्नलिखित कथन सत्य हैं या असत्य हैं। औचित्य भी बतलाइए।

(i) समुच्चय N में किसी भी स्वेच्छ द्विआधारी संक्रिया* के लिए a * a = a, ∀a ϵ N
(ii) यदि N में * एक क्रमविनिमेय द्विआधारी संक्रिया है तो a * (b * c)=(c * b) * a

      उत्तर:

यहाँ द्विआधारी संक्रिया समुच्चय N पर इस प्रकार परिभाषित की गयी है कि
a * a = a ∀ a ϵ N
(i) यहाँ पर * संक्रिया में केवल एक ही अवयव का प्रयोग किया गया है।
अतः यह कथन असत्य है।
(ii) वास्तविक संख्याओं में समुच्चय पर संक्रिया क्रमविनिमेय है।
b * c = c * b
= (c * b) * a = (b * c) * a = a * (b * c)
∴ a * (b * c) = (c * b) * a
अतः यह कथन सत्य है।

प्रश्न 13.

a * b = a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए।

(A) * साहचर्य तथा क्रमविनिमेय दोनों है
(B) * क्रमविनिमेय है किन्तु साहचर्य नहीं है
(C) * साहचर्य है किन्तु क्रमविनिमेय नहीं है
(D) * न तो क्रमविनिमेय है और न साहचर्य है

      उत्तर:

यहाँ द्विआधारी संक्रिया को समुच्चय पर इस प्रकार परिभाषित किया गया है कि
a * b = a3 + b3
(a) a * b = a3 + b3, b * a = b3 + a3 = a3 * b3
∴ a * b = b * a
अत: यह संक्रिया क्रमविनिमेय है।
(b) a * (b * c) = a * (b3 + c3) = a3 + (b3 + c3)3
(a * b) * c= (a3 + b3) * c = (a3 + b3) + c3
∴ a * (b * c) ≠ (a * b) * c
अतः यह * संक्रिया साहचर्य नहीं है।
∴ संक्रिया क्रमविनिमेय परन्तु साहचर्य नहीं है।
अतः विकल्प (B) सही है।

NCERT Solution Variousinfo

तो दोस्तों, कैसी लगी आपको हमारी यह पोस्ट ! इसे अपने दोस्तों के साथ शेयर करना न भूलें, Sharing Button पोस्ट के निचे है। इसके अलावे अगर बिच में कोई समस्या आती है तो Comment Box में पूछने में जरा सा भी संकोच न करें। अगर आप चाहें तो अपना सवाल हमारे ईमेल Personal Contact Form को भर पर भी भेज सकते हैं। हमें आपकी सहायता करके ख़ुशी होगी । इससे सम्बंधित और ढेर सारे पोस्ट हम आगे लिखते रहेगें । इसलिए हमारे ब्लॉग “NCERT Solution Variousinfo” को अपने मोबाइल या कंप्यूटर में Bookmark (Ctrl + D) करना न भूलें तथा सभी पोस्ट अपने Email में पाने के लिए हमें अभी Subscribe करें। अगर ये पोस्ट आपको अच्छी लगी तो इसे अपने दोस्तों के साथ शेयर करना न भूलें। आप इसे whatsapp , Facebook या Twitter जैसे सोशल नेट्वर्किंग साइट्स पर शेयर करके इसे और लोगों तक पहुचाने में हमारी मदद करें। धन्यवाद !

Originally posted 2021-01-13 12:40:00.

Sharing Is Caring:

Hello friends, I am Ashok Nayak, the Author & Founder of this website blog, I have completed my post-graduation (M.sc mathematics) in 2022 from Madhya Pradesh. I enjoy learning and teaching things related to new education and technology. I request you to keep supporting us like this and we will keep providing new information for you. #We Support DIGITAL INDIA.

Leave a Comment